

VIBRATION ABSORBERS

Scan this QR Code

Movement Absorption

Braided expansion joints are constructed with a corrugated inner bellows and braided cover that helps increasing the pressure resistance rating and provides end limitations that annihilate the need for additional control assemblies.

Stainless steel bellows and braiding deliver maximum performance regarding, high pressure and temperature capacity, noise and vibration absorption and overall cyclic service life Unlike rubber expansion joints, stainless steel bellows are not effected by atmospheric damage and UV-radiation especially when used in an outdoor installation.

Advantages of Using Braided Expansion Joints:

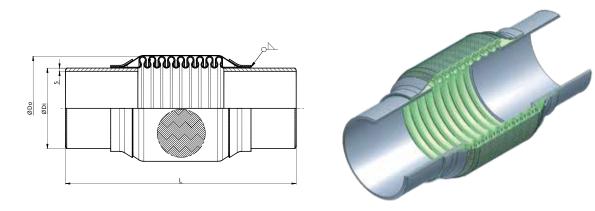
- The vibration absorbers can withstand high pressure at elevated temperatures
- Reduces vibrations, oscillations, and noise (sound and vibration) from pumps into pipe systems
- Braiding is used for pressure thrust forces from the pump are not transferred to the piping
- They have a compact design that reduces the waste of space.
- Performance reliability and increased service life of the pipe system and connected equipment
- Unlike rubber expansion joints, the vibration absorbers are resistant against ageing, high temperatures and UV-radiation

DESIGN (EN 14917&EJMA)

Bellow Material	Stainless Steel AISI 321 (Opt.304,316L,316TI,309)
Connection Types	Fixed and Floating Flanged, Welded Ended & Grooved
Flange Material	PN 16, St.37.2 as standard, the material can be customised on request
Inner Sleeve	Available in stainless steel AISI 321 (Opt. 304,316L,316TI,309) on request
Accessories	Inner sleeve, cover, counter flange, gaskets, insulation etc. are available on request.
Certificates	Material certificate 3.1 according to EN 10204 and /or ASME
	PED 2014/68/EU Cat.III Mod.H

Operation Conditions

Operating Temperature-10°C/+550°C Operating PressureStandard pressure rating is PN16 PN corresponds to the allowable operating pressure at room temperature


Important

We strongly advise against the use of expansion joints and bellows for misalignment. Torsion on bellow parts are not desirable and should be eliminated.

VIBRATION ABSORBERS

Braided Expansion Joints					
Туре	Movement	Available Sizes (DN)	Pressure Class (PN)		
ÖKTY-30	30 mm (-20/+10)	32-250	16		

Bellow Information				ÖKTY-30			
DN	Ødi	Ødo	Effective Bellow Area cm ²	Axial Spring Rate N/mm	S	L	Code
DN32	42,4	55	18,62	49,7	2,6	200	702.351.101.008
DN40	48,3	61	23,44	60,8	2,6	200	702.351.101.010
DN50	60,3	76	36,46	104,5	2,9	200	702.351.101.012
DN65	76,1	95	57,45	87,8	2,9	200	702.351.101.014
DN80	88,9	111	78,42	178,9	3,2	215	702.351.101.016
DN100	114,3	140	137,09	252,2	3,6	215	702.351.101.018
DN125	139,7	164	181,01	320,0	4,0	215	702.351.101.020
DN150	168,3	200	266,20	196,4	4,5	215	702.351.101.022
DN200	219,1	250	431,86	694,2	6,3	215	702.351.101.024
DN250	273	323	697,11	590,0	6,3	250	702.351.101.026

*All dimensions given in the tables are in "mm".

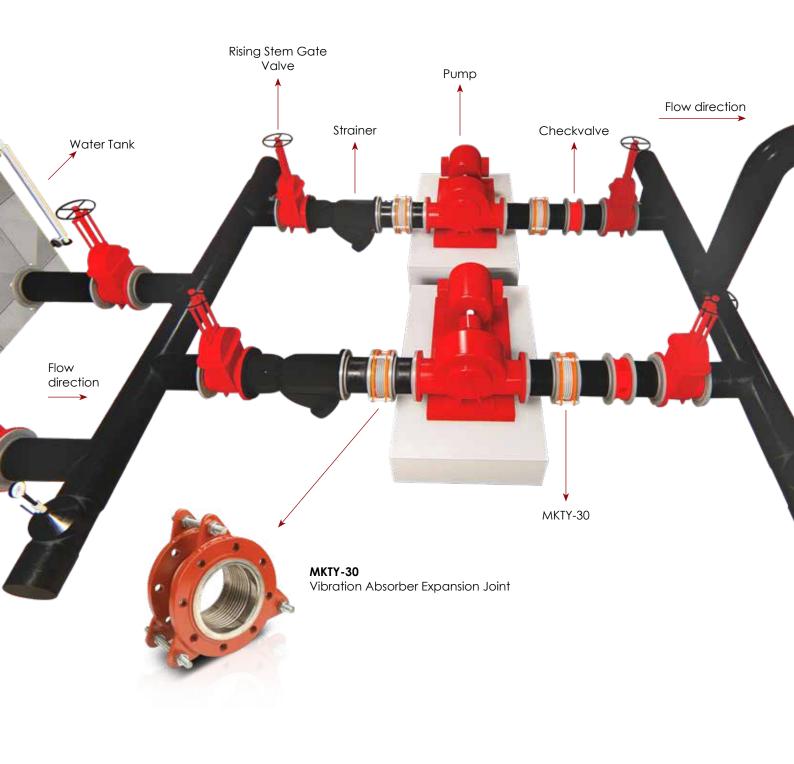
** Subject to technical alterations and deviations resulting from production process without giving any notification.

Flange (DIN EN 1092/1) PN 16						
DN	ØD	Øk	Ød4	f	b	Ødxn
DN25	115	85	68	2	16	Ø 14x4
DN32	140	100	78	2	18	Ø 18x4
DN40	150	110	88	3	18	Ø 18x4
DN50	165	125	102	3	20	Ø 18x4
DN65	185	145	122	3	20	Ø 18x4
DN80	200	160	138	3	20	Ø 18x8
DN100	220	180	158	3	22	Ø 18x8
DN125	250	210	188	3	22	Ø 18x8
DN150	285	240	212	3	24	Ø 23x8
DN200	340	295	268	3	26	Ø 23x12
DN250	405	355	320	3	29	Ø 27x12
DN300	460	410	378	4	32	Ø 27x12

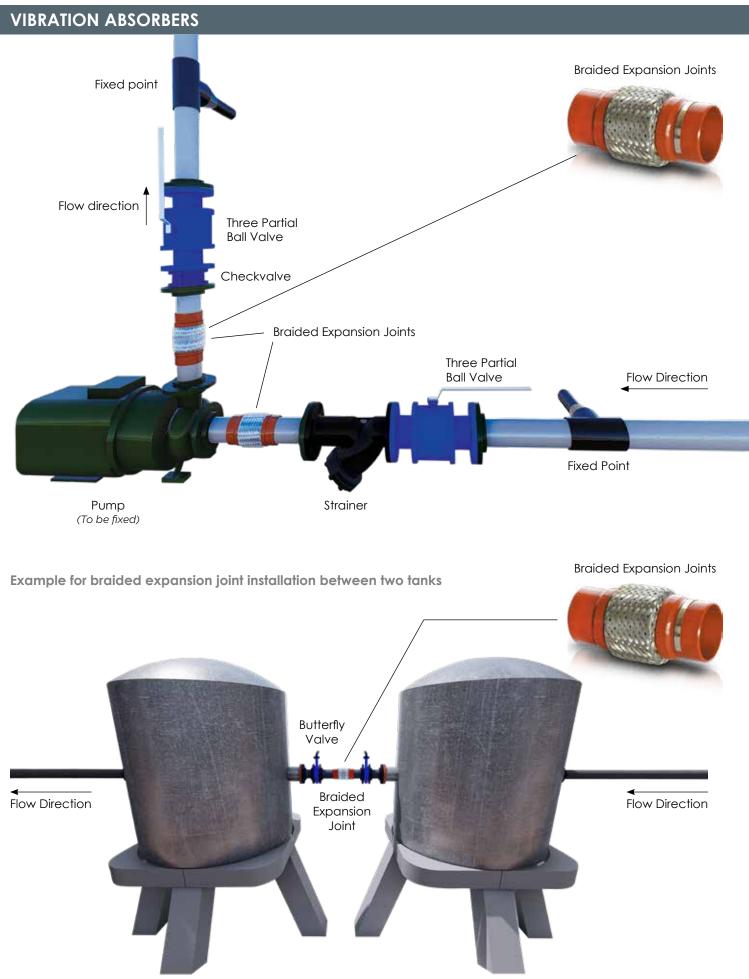
Alternative flange dimensions are also possible e.g. according to US standards (ANSI), JIS etc.

Reduction Factors for Pressure						
Temperature °C	Reduction Factor Kp	Temperature °C	Reduction Factor Kp			
20	1,00	350	0,64			
100	0,85	400	0,63			
150	0,81	450	0,62			
200	0,77	500	0,60			
250	0,71	550	0,59			
300	0,68	600	0,57			

Pressure reduction factor


The reduction factor is used to define the design pressure [PS] where temperatures exceed 20 °C. It compensates for the decay in material mechanical properties at elevated temperatures. The calculated pressure is lower than the nominal pressure of the standard item.

Calculation: PS ≤ PN x Kp



VIBRATION ABSORBERS

Installation Example for Vibration Absorbers

